KEAM Mathematics Mock Test Questions 2025
KEAM Mathematics Mock Test Question Paper 2025 - Practice Free Online KEAM (Mathematics) Quiz MCQs
Recommended: KEAM Mock Test
KEAM Mathematics Quiz - Practice Online
If \( \int_0^1 (3x^2 + 2x + 1)\, dx \) is evaluated, the result is:
Evaluate \( \sum_{k=1}^{n} k \cdot (k+1) \):
The general solution of \( \frac{dy}{dx} = y \tan x \) is:
Evaluate \( \lim_{x \to 0} \frac{\sin 3x}{x} \):
The determinant of the matrix \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) is:
If \( \vec{a} = \hat{i} + 2\hat{j} \), \( \vec{b} = 3\hat{i} - \hat{j} \), then \( \vec{a} \cdot \vec{b} \) is:
The value of \( \sum_{r=1}^5 r^2 \) is:
Find the area under the curve \( y = x^2 \) from \( x = 1 \) to \( x = 3 \):
If \( y = e^{3x} \), then \( \frac{dy}{dx} \) is:
Which of the following series is convergent?
If \( \vec{a} = 2\hat{i} - \hat{j} \), \( \vec{b} = \hat{i} + \hat{j} \), find \( |\vec{a} \times \vec{b}| \):
If \( \int \frac{dx}{x^2 + 1} = \theta \), then \( \theta = \):
The value of \( \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \) is:
Find the sum: \( \sum_{k=1}^{n} k = ? \)
If \( A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \), find \( \text{Tr}(A) \):
Which of the following is a solution to \( \frac{dy}{dx} = -ky \) ?
Evaluate \( \int \ln x \, dx \):
If \( \vec{a} \cdot \vec{b} = 0 \), the vectors are:
The determinant of a 3x3 identity matrix is:
The sum to \( n \) terms of the series \( 5 + 10 + 15 + \ldots \) is: